Risk Stratification

TNM classification, Gleason scoring, and PSA tracking for comprehensive patient evaluation. Evidence base: Halabi 2014 (C-index: 0.707), NCCN v1.2024, 3-PS Score (AUC: 0.74), VISION trial PSA response rates

Methodology & Validation

Primary Risk Models

  • NCCN v1.2024: TNM + Grade Group + PSA for localized disease
  • Halabi 2014: 6-variable model for mCRPC OS prediction (C-index: 0.707)
  • 3-PS Score: Hemoglobin + ECOG + PSA for mCRPC (AUC: 0.74)
  • Grade Groups: Pierorazio 2013 (20,845 patients, 10-yr follow-up)

Validation Status

Validated Parameters
Halabi coefficients from JCO 2014; PSA response rates from VISION trial; NCCN criteria v1.2024.
Clinical Note
Halabi model not validated in Lu-177-PSMA cohorts; consider recalibration for RLT patients.

Patient Information

Demographics

TNM Staging

Gleason Score

PSA Metrics

Additional Clinical Data (for mCRPC)

Adverse factor uses LDH > ULN (binary)
Adverse-factor thresholds (editable)
Defaults shown are derived from the paper's Fig 1B (Total cohort 25th/75th percentiles). If your local population differs, adjust accordingly.

Model Specifications & Validation

Halabi 2014 Prognostic Index

PI = 0.405×ECOG + 0.345×[Visceral Mets] + 0.321×[LDH > ULN] + 0.295×log10(PSA) + 0.186×log10(ALP) - 0.382×Hgb - 0.362×Albumin + 0.323×[NLR > ULN]
Median OS
exp(4.56 - PI) months
C-index
0.707 (validation cohort)
Sample Size
8,820 patients (17 trials)

PSA Response Prediction (VISION Trial)

46%
PSA50 Response Rate
16%
PSA90 Response Rate
1.4 mo
Median Time to Nadir
N=831
VISION Trial Patients

Modern Prognostic Models Included

Model Predictors Performance Validation Cohort
3-PS Score Hemoglobin, ECOG, PSA AUC: 0.74 Ra-223 patients (n=161)
Modonutti 2022 AST, BMI, Hgb, ALP, PSA, Visceral tAUC: 0.73-0.72 Multicenter (n=1,023)
ePCR Model Ensemble penalized Cox AUC: 0.77-0.79 DREAM Challenge

Important Limitations

  • Halabi model not validated in Lu-177-PSMA radioligand therapy patients.
  • NCCN criteria optimized for external beam radiotherapy outcomes.
  • PSA response rates from VISION trial (Lu-177-PSMA vs standard care).
  • Clinical decisions require patient-specific assessment by qualified professionals.

Scientific References

1. Halabi et al. (2014) – Primary Model: Halabi S, Lin CY, Kelly WK, et al. Updated Prognostic Model for Predicting Overall Survival in First-Line Chemotherapy for Patients With Metastatic Castration-Resistant Prostate Cancer.
J Clin Oncol. 2014;32(7):671-677.
https://doi.org/10.1200/JCO.2013.52.3696
Key Finding: Model evaluated across 17 trials (n=8,820); C-index 0.707.

2. PSA Response Validation :
Nakano K, et al. External validation of risk classification… BMC Urol. 2014.
doi:10.1186/1471-2490-14-31
Lorente D, et al. Prognostic Score and Benefit from Abiraterone… Eur Urol. 2021.
doi:10.1016/j.eururo.2021.07.014
Key Finding: PSA response reported as a predictor for OS.

3. Survival Scores – Radium-223 :
Al‑Ezzi EM, et al. Clinicopathologic factors… Radium‑223. Cancer Med. 2021.
doi:10.1002/cam4.4125
Song B, et al. Prognostic factors… Radium‑223: meta-analysis. Front Oncol. 2025.
doi:10.3389/fonc.2025.1672802
Key Finding: Confirms prognostic value of Hb, ECOG, PSA.

4. Grade Group Validation :
Shao I‑H, et al. Nomogram analysis… mCRPC. Cancer Med. 2024.
doi:10.1002/cam4.70319
Kawahara T, et al. Survival nomogram… abiraterone/enzalutamide. BMC Cancer. 2023.
doi:10.1186/s12885-023-10700-0
Yang Y‑J, et al. External validation… nomogram. Asian J Androl. 2018.
doi:10.4103/aja.aja_39_17
Key Finding: Grade groups consistently predict long-term mortality.

5. Nomogram Performance :
Kawahara T, et al. Survival nomogram… BMC Cancer. 2023.
doi:10.1186/s12885-023-10700-0
Yang Y‑J, et al. External validation… 2018.
Key Finding: Reported AUC values 0.72–0.79.

6. NCCN Risk Stratification :
Sundi D, et al. Optimizing Management of High-Risk Prostate Cancer. Korean J Urol. 2012.
doi:10.4111/kju.2012.53.12.815
Marciscano AE, et al. Management of High-Risk Localized Prostate Cancer. Adv Urol. 2011.
doi:10.1155/2012/641689
Key Finding: Confirms Low/Int/High risk categories used by NCCN.

7. Laajala et al. (2018) – ePCR Model: Laajala TD, et al. ePCR: an R-package for survival and time-to-event prediction…
Bioinformatics. 2018.
doi:10.1093/bioinformatics/bty477
Key Finding: AUC 0.77–0.79 in mCRPC survival prediction.

8. D'Amico Risk Stratification :
Rastinehad AR, et al. D’Amico risk stratification correlates with MRI suspicion. J Urol. 2011.
doi:10.1016/j.juro.2010.10.076
Mitchell JA, et al. Risk assessment methods predicting recurrence. J Urol. 2005.
doi:10.1097/01.ju.0000155535.25971.de
Key Finding: Foundational Low/Intermediate/High groups reported across cohorts.